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SUMMARY

An incompressible Navier–Stokes solver based on a cell-centre finite volume formulation for unstruc-
tured triangular meshes is developed and tested. The solution methodology makes use of pseudocom-
pressibility, whereby the convective terms are computed using a Godunov-type second-order upwind
finite volume formulation. The evolution of the solution in time is obtained by subiterating the equations
in pseudotime for each physical time step, with the pseudotime step set equal to infinity. For flows with
a free surface the computational mesh is fitted to the free surface boundary at each time step, with the
free surface elevation satisfying a kinematic boundary condition. A ‘leakage coefficient’, o, is introduced
for the calculation of flows with a free surface in order to control the leakage of flow through the free
surface. This allows the assumption of stationarity of mesh points to be made during the course of
pseudotime iteration. The solver is tested by comparing the output with a wide range of documented
published results, both for flows with and without a free surface. The presented results show that the
solver is robust. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years algorithms for solving the Euler and Navier–Stokes equations for compressible
flows using unstructured meshes have gained in popularity and impressive results have been
reported [1–5]. By exploiting the high flexibility of unstructured meshes and by adopting a
solution methodology based on the finite volume method, the governing systems of equations
can be solved on a Cartesian co-ordinate system without having to use co-ordinate transforma-
tions and, moreover, discontinuous flows like those associated with shock propagation can be
successfully simulated. Many researchers have extended techniques invented for compressible
flows into the domain of incompressible flows. One of these extensions involves the application
of Godunov-type second-order upwind finite volume methods on triangular meshes for the
solution of the system of the shallow water equations [6]. Another, perhaps the most notable
one, is the introduction of pseudocompressiblility into the system of incompressible Navier–
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Stokes equations and solving the resulting set of equations using techniques originally
developed for compressible flow problems [7–15].

In the present work the method of pseudocompressibility is adopted for the solution of the
incompressible Navier–Stokes equations on unstructured triangular meshes. The merit of
using pseudocompressibility is that it directly couples the pressure and velocity fields at the
same time level thus producing a hyperbolic system of equations. As a result, some of the
recently developed upwind finite volume solution techniques, such as the characteristics based
Godunov-type schemes, can be applied in a straightforward manner to incompressible flows.
The main disadvantage of introducing pseudocompressibility into the system of incompressible
Navier–Stokes equations is that it is not suitable for time-dependent solutions and, as a result,
only steady state solutions can be obtained. However, this undesirable aspect has been
overcome by the emergence of the implicit pseudotime iteration technique [11–15], whereby
the time-dependent solution is viewed as the solution of a steady state problem at each time
step. In applying this technique, the pseudotime is usually set to a very large value which leads
to fast convergence. In the present study the pseudotime is set to infinity. As a result, accurate
time-dependent solutions are shown to be obtainable by the method of pseudocompressibility
solely by implicit iteration.

When applied to unstructured meshes the above solution methodology is also suitable for
problems involving flows with a free surface. Hino et al. [16] have recently reported the use of
a similar solution methodology for steady state problems. For flows with a free surface the
computational mesh is adapted to the free surface at the end of each computational time step,
with the free surface elevation satisfying a kinematic boundary condition. The time history of
the mesh evolution is not critical for a steady state solution since the mesh becomes stationary
at steady state. As a result, the time derivative of the computational cell area is eliminated
from the system of discretized algebraic equations. However, this is not the case for time-de-
pendent calculations since this derivative is not identically equal to zero during the transient
stage. This poses a problem to the solution technique when applied to unstructured triangular
meshes, as it is by no means easy to quantify the movement of the triangular cells. In the
present work this difficulty is dealt with by discarding the time derivative of the computational
cell area in the discretized equations and, consequently, the mesh is assumed to be stationary
during the course of pseudotime iteration. In order to compensate for any side effects arising
from this simplification, a ‘leakage coefficient’ o, is introduced which allows for some ‘leakage’
of flow through the free surface during the implicit iteration stage. Results obtained show that
this technique is viable and robust.

The present numerical model is second-order-accurate and is based on a cell-centre finite
volume upwind scheme. The description of the flow variables over each triangular cell is based
upon the technique proposed by Barth and Jespersen [4]. Roe’s flux function is used for the
evaluation of the inviscid fluxes at the triangular cell faces, assuming a local Riemann problem
in the direction normal to a cell face. The viscous terms are computed in a manner similar to
that proposed by Pan and Cheng [5] which is second-order-accurate.

Section 3 of the paper describes the finite volume discretization of the 2D Navier–Stokes
equations on an unstructured triangular mesh. A detailed account of the formulation of the
inviscid and viscous fluxes is given in Section 4. In Section 5 the implementation of appropriate
boundary conditions is presented, and the procedures used for updating the free surface
boundary as well as for applying the leakage coefficient are discussed. The integration in time
of the discretized equations is described in Section 6. Results for internal flows such as flow
over an oscillating plate, flow through a one-dimensional channel with an oscillating back
pressure, flow over a circular cylinder, and flow over a backward-facing step are presented and
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discussed in Section 7. In order to fully validate the solution methodology results are also
presented in Section 7 for flows with a free surface, such as the oscillation of the free surface
of the water in a tank, a water column subjected to a centrifugal force, propagation of a
solitary wave, and flow over a submerged hydrofoil. The presented results show that the
present scheme is accurate and robust.

2. FINITE VOLUME DISCRETIZATION OF THE 2D NAVIER–STOKES
EQUATIONS ON AN UNSTRUCTURED MESH

The integral form of the system of non-dimensionalized 2D Navier–Stokes equations can be
written as

(

(t
&&

V
Q dV+

&
S

F ·n dS=
&&

V
H dV, (1)

where V is the domain of interest, S is the boundary surrounding V, n is the unit normal to
S in the outward direction, Q is the vector of primitive variables, F is the vector of flux
functions through S, and H is the body forcing function. Q, F and H are represented by the
following expressions:
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where the superscripts I and V denote the inviscid and viscous fluxes, respectively, nx and ny

denote the components of the normal vector n, p is the dynamic pressure, u and 6 are the
velocity components, ux, uy and 6x, 6y, are the derivatives of the velocity components in the x-
and y-directions, respectively, sx is the free surface slope, Re is the Reynolds number, and F
is the Froude number. It should be noted that for free surface flow the pressure p would
correspond to the kinematic pressure, which is equal to the dynamic pressure minus the
hydrostatic pressure.

In order to couple the pressure and velocity fields at the same time level, so as to produce
a hyperbolic system of equations, the pseudocompressibility relation is introduced by adding
the time derivative of pressure to the continuity equation. Accordingly, Q, f I and g I are
modified as follows:
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=
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where b is the coefficient of pseudocompressibility. It is clear from the above expressions that
Q, f I and g I of Equation (2) are recovered from Equation (3) only when steady state is
reached. Therefore, and in order to obtain accurate time-dependent solutions, the above
formulation needs further modification which is discussed in Section 6.
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The spatial discretization of Equation (1) is carried out on an unstructured computational
domain formed by a collection of triangular cells. The average of conserved variables is stored
at the centre of each cell, and the edges of each cell define the faces of a triangular control
volume. For each triangular control volume, Equation (1) is written as

(Qi Vi

(t
= −

7
(Ci

F ·n dS+Hi Vi= −R(Qi), (4)

where Qi and Hi are the average quantities of cell i stored at the cell center, and (Ci and Vi

denote the boundary of the cell and the area of cell i, respectively. The right-hand side of
Equation (3) is evaluated by summing the flux vectors over each edge of the triangular cell,
and the discrete form of the integral is7

(Ci

F ·n dS= %
j=k(i)

Fi, jDlj, (5)

where k(i ) is a list of the neighbouring cells to cell i, Fi, j is the numerical flux through the
interface of cells i and j, and Dlj is the length of edge j. For a cell-centered scheme based on
a triangular mesh k(i ) is a list of three cells.

3. EVALUATION OF INVISCID AND VISCOUS FLUXES

3.1. In6iscid fluxes

In order to evaluate the inviscid numerical fluxes Fi, j
I , Roe’s [17–19] flux function is adopted

locally at each cell edge, assuming a 1D Riemann problem in the direction normal to the cell
edge, as follows:
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where Qi, j
+ and Qi, j

− are the reconstructed right and left states of the cell face between cell i and
cell j, A is the flux Jacobian evaluated by Roe’s average state, which is the average of Q+ and
Q− [20]. The quantities R, L and L are the right and left eigenvectors of A and the eigenvalues
of A, respectively. The flux Jacobian A is
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and its eigenvalues are given by

l1=unx+6ny, l2=unx+6ny+c, l3=unx+6ny−c. (8)

The right eigenvector is
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and the left eigenvector matrix is
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where c in the above expressions denotes the pseudowave celerity [(unx+6ny)2+b(nx
2 +ny

2)]1/2,
and n denotes the magnitude of the normal vector n to the cell edge, for a unit normal the
magnitude is equal to 1.

In order to obtain second-order accuracy, a piecewise linear model for the cell variables
must first be reconstructed from the solution before the two Riemann states at each cell edge
are computed. For a given cell with centre A for example, this requires the construction of the
cell variables in the form

Q(x, y)=QA+9QA ·r, (11)

where r is the vector from the cell centre A to any point (x, y) within the cell, QA is the cell
centre value of cell A, and 9QA is the gradient of cell A evaluated using the cell centre values.

By applying Gauss’s theorem, the solution gradient of cell A can be estimated by evaluating
a boundary integral over the path surrounding A as

9Q=
1

AV

7
(A

Qn dS, (12)

where (A is an integration path connecting points with known variables, and AV is the area
contained in the path. A direct simple integration path for 9Q is the path connecting three
neighbouring cell centres B, C and D as shown in Figure 1. As suggested by Pan and Cheng
[5], the estimated gradient accuracy can be further improved by carrying out a weighted
averaging process, as follows:

9QA
mod=

1
2

(9QA+wB9QB+wC9QC+wD9QD), (13)

and

wB= (rAC×rCD)/(rBC×rCD), wC= (rAD×rDB)/(rBC×rCD),

wD= (rAB×rBC)/(rBC×rCD), (14)

where 9QB,C,D are the gradient vectors of cells B, C, D, respectively, evaluated by Equation
(11), and the quantities r are the distance vectors from cell centre A to the centres of the
neighbouring cells.

Figure 1. BCD defines the integration path for 9QA.
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Figure 2. (a) APBQ defines the integration path for viscous stresses at an interior cell; (b) APQ defines the integration
path for viscous stresses at a boundary cell.

3.2. Viscous fluxes

The viscous numerical flux Fi, j
V is evaluated by computing the gradient of the velocity at each

cell edge using the expression

9QPQ=
1

AAPBQ

(ABPQ9QAPQ+AAPQ9QBPQ), (15)

where, with reference to Figure 2(a), 9QAPQ and 9QBPQ are the gradient vectors of paths APQ
and BPQ, respectively, evaluated by Equation (17), and AAPBQ, AAPQ, and ABPQ are the areas
of quadrilateral APBQ and triangles APQ and BPQ, respectively. The variable values at cell
vertices P and Q are obtained by a distance-weighted averaging of cell centre values
surrounding that particular vertex. Once the gradient vectors of velocity are obtained, the
viscous fluxes at cell edge PQ can then be combined with the evaluated inviscid flux and put
into Equation (4) for integration. For a triangle on the boundary as shown in Figure 2(b), the
gradient at the boundary PQ is evaluated on the triangular contour APQ only. Assuming
accurate values at P and Q, the above formulation is second-order-accurate for a parallelo-
gram and first-order-accurate for a general quadrilateral element [5].

4. BOUNDARY CONDITIONS AND FREE SURFACE TREATMENT

4.1. Boundary conditions

At inflow or outflow boundaries, characteristic boundary conditions are imposed. Following
this treatment, characteristic variables are extrapolated from interior of the domain whenever
applicable. For example, with reference to the local cell edge axes, there always exists one
outgoing characteristic at the inflow boundary and two outgoing characteristics at the outflow
boundary. The extrapolation is carried out linearly using the left eigenvector matrix as shown
below:
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where the symbol B above denotes the boundary values or the values of the right Riemann
states at the boundary, and I denotes the imposed values. Imposed values are values either
imposed physically or given by the values of the left Riemann states at the boundary. The
vector [p, u, 6 ]− l in Equation (16) may also be replaced by [Dp, Du, D6 ]−1. Boundary condi-
tions are applied at the interface of a cell.

The boundary conditions for a wall boundary are set as

Slip wall:
hB=hI

uB=0
6B=6I

No−slip wall:
hB=hI

uB=0
6B=0

(17)

4.2. Free surface treatment

Two free surface boundary conditions must be satisfied. The first is the dynamic condition
which states that stresses on the air–liquid interface are continuous. In the present study the
tangential stress and surface tension are set equal to zero at the air–liquid interface, and the
air pressure is assumed to be constant. The second free surface condition is the kinematic
condition which states that the free surface is a material surface. This means that a fluid
particle on the free surface remains there. The dynamic and kinematic boundary conditions are
expressed as

p=constant, (18)

and

(h
(t

+u
(h
(x

−6=0, (19)

where h is the free surface elevation with respect to the still water level. Equation (19) permits
solutions only when h is single-valued.

The free surface boundary is calculated by solving Equation (19) at each time step following
the convergence of the bulk flow. In order to accomplish this, the velocity components u and
6 on each free surface node are first extrapolated from the interior of the domain using the
calculated values from the surrounding cells. Equation (19), which is discretized spatially in the
same manner as for the bulk flow (by applying the cell centre upwind finite volume method in
one dimension) is then integrated in time using the explicit fourth-order Runge–Kutta method.

Following the updating of the free surface, the computational mesh is moved to adapt to the
free surface boundary. This is accomplished by stretching the mesh vertically using the
relationship

xi
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where yb is a reference elevation above which mesh points are stretched, while mesh points
below it remain stationary. In the above expression ys(xi) is the free surface elevation at x=xi

and is computed by linear interpolation when xi does not coincide with the x-co-ordinate of
the free surface nodes. This procedure produces a linear stretching of the mesh points between
the free surface elevation ys and the reference elevation yb.

It should be noted that, since the present free surface mesh adaptation method is based on
a simple one-dimensional stretching technique, it cannot be used for the simulation of
overturning or breaking waves where the free surface is not single valued.

4.2.1. Leakage coefficient. The free surface in the present scheme is considered to be moving
discretely in time. Accordingly, it is assumed to be stationary within the duration of a physical
time step and it moves only at the end of each time step. As a result, the time derivative of the
computational cell area is dropped from the discretized algebraic equations. In order to
compensate for any side effects arising from this simplification, the requirement of a material
free surface is relaxed somewhat during the course of the numerical solution. This is done by
considering the free surface to behave like a surface between the two extremes of a material
surface and an open boundary on which the normal velocity gradient is zero. This approach
provides a desirable degree of flexibility when it comes to specifying the normal components
of velocity at the free surface. It is, therefore, possible to set the right Riemann state of the
velocity component normal to the free surface to be zero, or equal to the value of the left
Riemann state, or to a value somewhere in between these two. This is accomplished by
introducing a ‘leakage coefficient’ o, such that

6n(Rr)=o6n(Lr), (21)

where 6n denotes the velocity component normal to the free surface, and Rr and Lr denote the
right and left Riemann states, respectively. When o=0, a true material free surface is
recovered. When o=1, the free surface is set to behave like an open boundary on which the
normal velocity gradient is zero.

It is worth highlighting that the leakage coefficient is introduced as an aid to attaining a time
accurate solution for the evolving free surface. When the leakage coefficient is set equal to one,
this amounts to simulating the free surface as a flexible membrane on which the pressure
remains constant. When the leakage coefficient is set equal to zero, this amounts to setting the
free surface as a rigid material surface, thus predefining its shape before the numerical
computation starts. In this case the pressure of the left Riemann state will be different from
that of the right Riemann state during the course of numerical iteration. Therefore, in general
the leakage coefficient o should be set equal to one in order to maintain time accuracy. If the
setting of o=1 causes free surface instability, this is an indication that either the computational
mesh at the free surface is too coarse or that the integration time step is too large. In such
cases the coefficient can be used as a ‘tuning’ tool by assigning to it a value of B1.

5. INTEGRATION IN TIME

Equation (4) can be integrated in time using the first-order Euler implicit time difference
method which is expressed as

(QV)n+1− (QV)n

Dt
= −R(Qn+1), (22)
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where V is the computational cell area. For the purpose of accurate integration in time
Equation (22) can not be used directly because a divergence free velocity field can not be
recovered from the continuity equation due to the introduction of pseudocompressibility. As
a result, Equation (22) must be further modified in order to attain a divergence free velocity
field at each time step. This is accomplished by introducing a pseudotime derivative into the
system of equations, as

(QV)n+1,m+1− (QV)n+1,m

Dt
+Ita

(QV)n+1,m− (QV)n

Dt
= −R(Qn+1,m+1), (23)

where t is the pseudotime and Ita=diag[0, 1, 1]. The right-hand side (RHS) of Equation (23)
can be linearized using Newton’s method at the m+1 pseudotime level to yield�

ImV+
(R(Qn+1,m)
(Q

n
(Qn+1,m+1−Qn+1,m)= −

�
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(Qn+1,m−Qn)V
Dt

+R(Qn+1,m)
n

,

(24)

where Im=diag[1/Dt, 1/Dt+1/Dt, 1/Dt+1/Dt ]. When D(Qn+1)m=Qn+ l,m+1−Qn+ l,m is iter-
ated to zero, the momentum equations are satisfied and the divergence of the velocity at time
level n+1 is zero. It is noted that in Equation (24) no linearization is applied at each physical
time step, and accurate solution in time is achieved at each physical time step when a steady
state solution is attained in pseudotime. In order to expedite the time marching process in
pseudotime, the pseudotime is usually set to a very large value, e.g. 1012 [14]. In the present
study it is set to infinity without causing a stability problem.

In the time discretization described above the cell area V is treated as constant. For free
surface flow calculations this is equivalent to assuming that the computational mesh is
stationary during the stage of pseudotime iteration.

During the implicit time integration some computational work relating to the inversion
process can be saved by letting the inviscid Jacobian on the implicit side of the equation to be
first-order-accurate, and to simulate the viscous Jacobian using a Laplacian-like dissipation
operator, i.e.

−
1

Re
%

j=k(i)

Fi, j
V Dlj= −

1
Re

%
j=k(i)

9Qi, j
V ·nDSj$−

1
Re

%
j=k(i)

rj,i ·nDlj
�rj,i �2

(Qj
V−Qi

V), (25)

where rj,i is the distance vector from cell centre i to cell centre j. The system of Equations (24)
can be written in matrix form as

(D+L+U)DQs=RHS, (26)

where D is a block diagonal matrix, L is a block lower triangular matrix, and U is a block
upper triangular matrix. Each of the elements in D, L and U is a 3×3 matrix. An approximate
LU factorization (ALU) scheme as proposed by Pan and Lomax [21] can be adopted to inverse
the implicit equation (26) in the form

(D+L)D−1(D+U)DQs=RHS, (27)

where the error of the factorization is equal to LD−1UDQs. Within each time step of the
implicit integration the subiteration is terminated when the L2 norm of the iteration process

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 35–57 (1999)



C.T. CHAN AND K. ANASTASIOU44

L2=
!� %

N

i=1

(Qs+1−Qs)2n/N"1/2

, (28)

is less than a specified limit.

6. NUMERICAL RESULTS

6.1. Oscillating flat-plate flow

As an initial test case, the unsteady flow over an oscillating infinite flat-plate was calculated.
This problem, known as Stoke’s second problem [22], has also been used by Pan et al. [20] and
Rogers and Kwak [13] to verify their schemes which were based on body conforming grids.

In this problem, the plate is set to oscillate in the x-direction with a velocity

uplate=uo cos(vt). (29)

The analytical solution for the velocity profile over the plate is given by

u(y, t)=uo exp
�

−y
'v

2n

�
cos

�
vt−y

'v

2n

�
. (30)

The computational mesh was extended to a height where the exact solution for the velocity is
B5×10−4uo. The variation of mesh size is such that, at the plate surface, the cell size is equal
to 0.02 of the total mesh height, while at the opposite end it is equal to the width of the
domain. The velocity uo was set to unity, the frequency was set to 2p, the viscosity was set to

Figure 3. Velocity profiles for flow over an oscillating plate. Solid lines denote computed solution, symbols denote
analytical solution. �, t=8.25; �, t=8.5; + , t=8.75; × , t=9.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 35–57 (1999)



PSEUDOCOMPRESSIBILITY METHOD 45

p, the physical time step was set to 0.01 and the coefficient of pseudocompressibility, b was set
to 100. At each time step, the root mean square (rms) of divergence of velocity and the residual
at any point were set to be iterated to B1×10−4. The problem was run until the velocity
became fully periodic in time. The computed solution is compared with the analytic solution
in Figure 3, where the solid lines denote the computed results and the symbols denote the
analytical solution. Excellent agreement is obtained.

6.2. In6iscid flow in an one-dimensional channel

The problem of inviscid flow in a 1D channel with an oscillating back pressure was tackled
using the present 2D code. This problem has been also used by Merkle and Athavale [11] and
Rogers and Kwak [13] in order to verify their methods. The computational domain was
triangulated with a layout of 25 cells in the x-direction and three cells in the y-direction. At
the inflow of the channel, a constant total pressure head was specified, and the static pressure
at the outflow was set to be

pexit=po+pe sin(vt). (31)

An analytical solution for this problem exists when the back pressure oscillation pe is small
compared with the mean back pressure po. In this example, the ratio of pe to po was set to be
0.1 and the mean velocity was set to unity. The analytical solution following for this case is
given by

u(t)=1−
pe

1+v2 [sin(vt)−v cos(vt)−ve−1], (32)

and

p(x, t)=po+pe sin(vt)+ (x−1)
pev

1+v2 [cos(vt)+v sin(vt)+e−1]. (33)

It can be noted from the above equations that both the pressure and the velocity solutions
contain exponential decaying terms which correspond to the initial transient, and sine and
cosine terms which correspond to the periodic harmonic motion. The analytical solution shows
that the velocity is a function of time only, which indicates that the flow is incompressible and
the channel area is constant.

The initial conditions for this problem were set using Equations (32) and (33) evaluated at
t=0. The frequency v was set to 10, the physical time step was set equal to p/(15v), and the
pseudocompressibility coefficient, b was set to 100. At each time step, the rms of divergence
of the velocity and the residual at any point were set to be iterated to below 1×10−6. Figure
4 shows the computed velocity time series as compared with the analytical solution. Very good
agreement is obtained.

6.3. Viscous 6ortex shedding behind a circular cylinder

Viscous vortex shedding behind a circular cylinder was simulated with the purpose to
validate the code for a fully 2D flow. The problem was run using a mesh with its outer
boundaries ten diameters from the cylinder. In this mesh, the cell size next to the cylinder
surface is 0.045 diameters. The Reynolds number was set to 200, the physical time step was
set to be 0.025 and the pseudocompressibility coefficient b was set to 10 for faster conver-
gence. At each time step, the rms of divergence of velocity and the residual at any point
were set to be iterated to B1×10−4. The flow was started from stationary conditions and
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Figure 4. Time series of velocity for flow in an inviscid channel with an oscillating black pressure. Solid line denotes
computed solution and + denotes analytical solution.

the simulation run until periodic shedding of vortices occurred. A pronounced asymmetric wake
began to appear at the non-dimensional time of 40 and became completely periodic at a time
of 90. Figure 5 shows the lift and drag coefficients on the cylinder versus time. The table below
shows a comparison between the present results and those obtained by other researchers.

Figure 5. Lift and drag coefficients versus time for flow over a circular cylinder (Re=200).
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CD CL St

1.4890.05Present 0.18390.63
Rogers et al. [13] 3rd order 1.2990.05 90.75 0.160
Rogers et al. [13] 5th order 1.2390.05 0.18590.65
Lecointe et al. [23] 2nd order 90.70 0.2271.4690.05

1.5890.0035Lecointe et al. [23] 4th order 0.19490.50

In the table above CD is the drag coefficient, CL is the lift coefficient, and St is the Strouhal
number. In comparison with the experimental CD value of 1.3 [13], the present numerical
simulation is seen to perform reasonably well, but not as well as that of Rogers et al. [13]. The
reason for this behaviour may be attributed to the fact that the computational mesh used next
to the cylinder is more than one order coarser than that used by Rogers et al. [13]. Figure 6
shows the streamlines in sequence for one complete cycle of the Kàrmàn vortex shedding.

It is worth mentioning that the vortex shedding test was also run with Re=80 and 60 using
the same computational mesh and time step. Shedding for Re=80 was fully captured with
CD=1.25 and CL=0.17, while at Re=60, the CD being 1.25 and the maximum CL

approximately 0.002, only small wiggles were captured and the shedding amplitude decayed in
time. These results indicate that the lowest Reynolds number at which vortex shedding starts
is about 60 and that no vortex shedding can be captured by the present scheme for ReB60.

6.4. Flow o6er a backward-facing step

Further validation of the model in calculating internal flow problems was carried out by
computing the flow over a backward-facing step. The definition of the problem is given in
Figure 7 where the reattachment length of the separation bubble was calculated for a range of
laminar flows with Re=100 to 800. The step height in this problem is equal to the inlet height,
and the Reynolds number is based on two step heights. The upstream boundary is located at
a distance of 11 steps from the step and the downstream boundary is located at a distance of
20 steps from the step.

The calculated reattachment length is shown in Figure 8, where it is compared with several
other sets of results including the experimental data of Armaly et al. [24]. The presented results
show that the present code performed very well for the entire range of values of the Reynolds
number. It is observed that separation at the opposite wall occurs for Re=500 and greater.
This separation begins upstream of the reattachment point of the primary separation, and ends
downstream of it. The size of this separation bubble ranges from four to six steps in height as
the Reynolds number increases. This behaviour agreed reasonably well with the experimental
observations which reported a range of five to eight step lengths. Figure 9 shows the velocity
field at Re=500.

6.5. Water column subjected to centrifugal force

In order to validate the code in simulating problems with a free surface, a simple
hypothetical problem of a water column subjected to a centrifugal force was initially consid-
ered. This problem is similar to the case of a rotating fluid column studied by Thè et al. [25]
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Figure 6. Streamline patterns showing in sequence (top to bottom) one cycle of the Kármán vortex shedding
(Re=200).

in verifying their surface-adaptive free surface code. The definition of the problem is given in
Figure 10, where a centrifugal force applied laterally to the water column in an infinitely long
channel is considered. The analytical solution of this problem is
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Figure 7. Problem definition for flow over a backward-facing step.

Figure 8. Reattachment length versus Reynolds number. T2, present results; T4, Rogers et al. [10]; T6, TEACH [24];
T8, Kim and Moin [10]; T10, Armaly et al. [24].

hs(x)=hso−
(vL)2

2g
�1

3
−
�x

L
�2n

, (34)

where hs is the free water surface elevation, hso is the initial water level, v is a hypothetical
angular frequency that generates the centrifugal force, L is the width of the water column and
g is the gravitational acceleration.

Figure 9. Velocity field for flow over a backward-facing step (Re=500).
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Figure 10. Problem definition for water column subjected to a centrifugal force.

In order to tackle this problem, hso was set to 5 m, L was set to 6 m, v was set to 1.476 rad
s−1, g was taken to be 9.81 m s−2, and a non-slip wall condition was used. The problem
domain was triangulated using mesh sizes ranging from 0.1 m at the free surface to 0.35 m at
the bottom. The problem was run from the quiescent condition to steady state using a range
of values of the leakage coefficients o. It was found that when the material free surface
condition is enforced, i.e. o=0, the movement of the free surface was damped heavily and the
steady state solution was reached with very little oscillation. On the other hand, when o=1
was used, the free surface movement became pronounced and the steady state solution was
reached after many cycles of oscillation. In all the runs, the free surface movements became
negligible when the rms of velocity and pressure were iterated below 0.1. Figure 11 shows a
comparison between the computed solution and the analytical solution.

Figure 11. Water surface profile at steady state. Solid line, computed solution; × , analytical solution.
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Figure 12. Problem definition for water oscillating in a tank: initial elevation.

6.6. Water oscillation in a tank

The capability of the code with regard to accurate time-dependent free surface calculations
was further tested by simulating the evolution of the sinusoidal oscillating free surface shown
in Figure 12. This case has also been studied by Thè et al. [25].

In this study, the mean water level hso and the half wave length L were set to 1 m and the
amplitude of the wave was set to 0.01 m. The flow was considered to be inviscid so that the
oscillation in the tank should occur without significant decay. A slip-wall boundary condition
was used. The computational domain was triangulated with a mesh size of 0.03 m distributed
on the free surface. Several runs were conducted with different o values. The time series of
water elevation at the left and right walls of the tank were recorded, and are shown in Figure
13(a,b). It is noted from the figures that when o is set to 0, the wave is critically damped, and
its amplitude decays to zero without oscillation. However, it is also noted that when o was set
to 1, the oscillation became unstable and the wave amplitude diverged in time. Figure 13 (b)
shows results corresponding to o=0.993. These results show that the oscillation was simulated
stably with only a very small decay rate. The problem was rerun using o=1 but with a
distribution of finer mesh at the free surface. It was found that, again, the oscillation was
captured stably and the results obtained were almost identical to those of Figure 13 (b). This
behaviour indicates that, for this particular case, a ‘remedy’ exists between the required
fineness of mesh size at the free surface and the value of o used.

6.7. Propagation of a solitary wa6e

In order to check whether the code can correctly calculate the wave speed and damping
characteristics of a solitary wave traveling in a channel, the case studied by Tang et al. [26] and
Thè et al. [25] was next considered. In this simulation the wave was set to travel in a channel
of 20 m length, and ho was equal to 1 m. The computational domain was triangulated with a
mesh size equal to 0.1 m on the free surface. The wave celerity C=
gho was set equal to 1
by taking g=1.0 m s−2. For this problem the Reynolds number is defined as Re=hoC/n.

Initially, the simulation was carried out by setting the surface elevation, h, equal to the
Boussinesq profile for a reflected wave with its peak amplitude, ao at the left boundary of the
domain, as

h=ho+2ao sech2�x
2


6ao

�
. (35)
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The velocity components and the viscosity were set to zero. The problem was then run for 5
s and the resulting surface elevation and velocity field were stored as initial conditions for
subsequent calculations. Figure 14 shows the development of the solitary wave during the
initial 5 s of simulation.

Figure 13. Surface elevation for case o=0. T2, left wall; T4, right wall. (b) Surface elevation for case o=1. T2, left
wall; T4, right wall.
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Figure 14. Development of the solitary wave.

The numerical experiments were carried on from 5 to 9 s with Re=5×104 and 50,
respectively, with the coefficient o set to 1. For Re=5×104 the amplitude decay rate was
found to be −2×10−3 m m−1, and the wave speed was very close to 1 m s−1. These results
agreed exactly with those obtained by Thè et al. The decay rate obtained by Tang et al. is
−1.7×10−3 m m−1 and the value given by Mei [27] is −1.75×10−3 m m−1 using his linear
perturbation theory. For Re=50, the amplitude decay rate from the present scheme is
−5×10−3 m m−1, which is lower than the values of −6.9×10−3, −7.2×10−3 and
−6.2×10−3 m m−1, given by Thè et al., Tang et al. and Mei, respectively. Considering the
coarseness of the mesh at the free surface, the lower value of the decay rate at low Reynolds
numbers is quite reasonable. It is noted that this tendency can be dealt with by using a lower
value of o, which would have the effect of increasing the decay rate. Figure 15 shows
snap-shots of propagation of the solitary wave at Re=5×104.

It is also noted from the presented results that wiggles are observed trailing the solitary
wave. These wiggles are numerically spurious, they do not form part of the physical solution,
and they can be quite easily suppressed using a finer computational mesh.

6.8. Flow o6er a submerged hydrofoil

In order to validate the code for more complicated free surface flows, i.e. for problems with
a free surface that crosses the still water level more than once, the last problem dealt with in
this work is the flow over a submerged hydrofoil. This problem has been studied in the
laboratory by Duncan [28] and numerically by Hino et al. [16] who used their multigrid explicit
cell-vertex scheme. As this problem requires rather long simulation times when tackled using
the present single mesh code, only one case is simulated and presented here.

The hydrofoil section considered is the NACA0012 with an angle of attack of 5°. The depth
of submergence measured at mid-chord and non-dimensionalized with respect to the chord
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Figure 15. Propagation of the solitary wave (Re=5×104).

length is 1.034. The Froude number used is F=0.5672 and the computational mesh is shown
in Figure 16. The mesh consists of 7857 cells, and it is noted that this mesh is coarser than
those used by Hino et al. [16], where the finest level of their three level meshes consists of
12854 cells. In order to prevent any reflection of waves into the solution domain, and to keep
the outflow water elevation at still water level, an exponential damping term of the form

Figure 16. Computational mesh for flow over a submerged hydrofoil.
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g(x)=
!0.5 exp{ln[s(x)+1](x−xd)/(xo−xd)}−1

0
if xd5xBxo

otherwise
,

is added to the RHS of the free surface kinematic condition. In the above expression
s(x)=h(x), h(x) is the water elevation with respect to the still water level, xo is the
x-co-ordinate of the outflow boundary, and xd is defined as

xd=xo−pF2/2. (37)

Equation (37) equivalent to setting a damping zone that extends to one quarter of the
deep-water wavelength, calculated from the linear theory, from the outflow boundary. The
simulation run until steady state was attained, with the coefficient o set to 1.

It is important to highlight that this problem was run twice, in the first instance using the
formulation of Equation (2) with the vector H= (0, −sx/F2, 0)− l, and also adopting the
formulation of Hino et al. [16] whereby the vector H is nullified by being incorporated into the
pressure term of the momentum equations and the pressure at the free surface is given by
po+h(x)/F2, where po denotes the atmospheric pressure. When the first formulation was used,
it proved to be very difficult to obtain a stable free surface at the outflow boundary. A stable
free surface was achieved only at the expense of applying very heavy damping at the outflow
boundary, by setting s(x)=6(x)+h(x) in Equation (36) and increasing the multiplier to one.
The results so obtained were found to be quite inferior to those obtained by adopting the
formulation of Hino et al. [16]. It is believed that this behaviour is due to the fact that in the
first formulation the slope of the free surface is used directly as the driving force in the
momentum equations, and the solution algorithm cannot handle the complication brought
about by the damping introduced at the outflow boundary which destroys the true free surface
slopes.Figure 17 shows results from the present scheme compared with those obtained by Hino
et al. [16] as well as the experimental data of Duncan [28]. The units in the figure have been

Figure 17. Wave profile over a submerged hydrofoil. T2, present scheme with the formulation of Hino et al. [16]; T8,
present scheme with a formulation using the free surface slope; T4, Duncan [28]; T6, Hino et al. [16].
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Figure 18. Computational mesh at steady state for flow over a submerged hydrofoil.

non-dimensionalized with respect to the hydrofoil length L. Figure 18 depicts the computa-
tional mesh near the free surface at steady state. The presented results show that the present
scheme performs very satisfactorily.

7. CONCLUSIONS

A numerical solver of the incompressible Navier–Stokes equations for flows with or without
a free surface has been developed and tested. The algorithm is based on a cell-centered finite
volume method, it makes use of the method of pseudocompressibility, and is capable of
dealing with both steady state and time-dependent problems. The method of pseudocompress-
ibility allows the equations to be solved as a hyperbolic system in pseudotime. Accurate
solutions at each time step are obtained by achieving a steady state solution in pseudotime. It
has been found that the pseudotime step can be set to infinity without causing any stability
problems. When applied to unstructured meshes consisting of triangular elements the al-
gorithm is capable of efficiently handling flow fields with complex geometries and flows with
a time-dependent free surface boundary. For flows with a free surface the computational mesh
is adapted to the computed free surface at every time step. This is accomplished by applying
a simple one-dimensional stretching technique to the mesh points, and during the process of
pseudotime iteration the computational mesh is considered to be stationary. This approach
simplifies the algorithm by allowing the time derivative of the computational cell area to be
eliminated from the discretized equations. Any side effects arising from this approach are
compensated by introducing a ‘leakage coefficient’ which relaxes the material free surface
boundary condition by allowing the fluid particles to flow through the free surface during the
course of numerical iteration. The numerical solver has been verified by application to a
number of cases, ranging from very simple flows, where the numerical solutions agreed very
well with available analytical solutions, to more complex flows, where the results were in close
agreement with both experimental data and results from other reported numerical schemes.
The results presented show that the present technique is robust.
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